
1

Virtual Instrumentation With LabVIEW

LabVIEW is a graphical development environment with built-in functionality
for simulation, data acquisition, instrument control, measurement analysis, and
data presentation. LabVIEW gives you the flexibility of a powerful
programming language without the complexity of traditional development
environments. LabVIEW delivers extensive acquisition, analysis, and
presentation capabilities in a single environment, so you can seamlessly develop
a complete solution on the platform of your choice.

In the workshop we will be using LabVIEW to acquire, analyze, and present
data from the Vernier LabPro. The following pages will serve as a brief
introduction to LabVIEW. Do not be alarmed if this seems a bit foreign initially.
Review the materials with the goal of familiarity not expertise. The workshop
will allow for step-by-step instruction and hands-on learning to prepare to give
your students a powerful learning and experimentation tool.

2

Front Panel
• Controls = Inputs
• Indicators = Outputs

Block Diagram
• Accompanying “program”

for front panel
• Components “wired”

together

LabVIEW Programs Are Called Virtual Instruments (VIs)

LabVIEW programs are called virtual instruments (VIs).

Stress that controls equal inputs, indicators equal outputs.

Each VI contains three main parts:
• Front Panel – How the user interacts with the VI.
• Block Diagram – The code that controls the program.
• Icon/Connector – Means of connecting a VI to other VIs.

The Front Panel is used to interact with the user when the program is running.
Users can control the program, change inputs, and see data updated in real
time. Stress that controls are used for inputs- adjusting a slide control to set
an alarm value, turning a switch on or off, or stopping a program. Indicators
are used as outputs. Thermometers, lights, and other indicators indicate
values from the program. These may include data, program states, and other
information.

Every front panel control or indicator has a corresponding terminal on the block
diagram. When a VI is run, values from controls flow through the block
diagram, where they are used in the functions on the diagram, and the results
are passed into other functions or indicators.

3

VI Front Panel

Front Panel
Toolbar

Graph
Legend

Boolean
Control

Waveform
Graph

Icon

Plot
Legend

Scale
Legend

The front panel is the user interface of the VI. You build the front panel with
controls and indicators, which are the interactive input and output terminals of
the VI, respectively. Controls are knobs, pushbuttons, dials, and other input
devices. Indicators are graphs, LEDs, and other displays. Controls simulate
instrument input devices and supply data to the block diagram of the VI.
Indicators simulate instrument output devices and display data the block
diagram acquires or generates.

In this picture, the Power switch is a boolean control. A boolean contains either
a true or false value. The value is false until the switch is pressed. When the
switch is pressed, the value becomes true. The temperature history indicator is
a waveform graph. It displays multiple numbers. In this case, the graph will plot
Deg F versus Time (sec).

The front panel also contains a toolbar, whose functions we will discuss later.

4

VI Block Diagram

Wire
Data

Graph
Terminal

SubVI

While Loop
Structure

Block
Diagram
Toolbar Divide

Function

Numeric
Constant

Timing
Function

Boolean Control
Terminal

The block diagram contains this graphical source code. Front panel objects
appear as terminals on the block diagram. Additionally, the block diagram
contains functions and structures from built-in LabVIEW VI libraries. Wires
connect each of the nodes on the block diagram, including control and indicator
terminals, functions, and structures.

In this block diagram, the subVI Temp calls the subroutine which retrieves a
temperature from a Data Acquisition (DAQ) board. This temperature is plotted
along with the running average temperature on the waveform graph
Temperature History. The Power switch is a boolean control on the Front
Panel which will stop execution of the While Loop. The While Loop also
contains a Timing Function to control how frequently the loop iterates.

5

Controls and Functions Palettes

 Controls Palette
 (Front Panel Window)

Functions Palette
 (Block Diagram Window)

Use the Controls palette to place controls and indicators on the front panel. The
Controls palette is available only on the front panel. Select Window»Show
Controls Palette or right-click the front panel workspace to display the
Controls palette. You also can display the Controls palette by right-clicking an
open area on the front panel. Tack down the Controls palette by clicking the
pushpin on the top left corner of the palette.

Use the Functions palette, to build the block diagram. The Functions palette is
available only on the block diagram. Select Window»Show Functions Palette
or right-click the block diagram workspace to display the Functions palette.
You also can display the Functions palette by right-clicking an open area on the
block diagram. Tack down the Functions palette by clicking the pushpin on the
top left corner of the palette.

6

Operating Tool

Positioning/Resizing Tool

Labeling Tool

Wiring Tool

Shortcut Menu Tool

• Floating Palette
• Used to operate and modify

front panel and block diagram
objects.

Scrolling Tool

Breakpoint Tool

Probe Tool

Color Copy Tool

Coloring Tool

Tools Palette

Automatic Selection Tool

If automatic tool selection is enabled and you move the cursor over objects on
the front panel or block diagram, LabVIEW automatically selects the
corresponding tool from the Tools palette. Toggle automatic tool selection by
clicking the Automatic Tool Selection button in the Tools palette.

Use the Operating tool to change the values of a control or select the text within
a control.

Use the Positioning tool to select, move, or resize objects. The Positioning tool
changes shape when it moves over a corner of a resizable object.

Use the Labeling tool to edit text and create free labels. The Labeling tool
changes to a cursor when you create free labels.

Use the Wiring tool to wire objects together on the block diagram.

7

Run Button

Continuous Run Button

Abort Execution

Pause/Continue Button

Text Settings

Align Objects

Distribute Objects

Reorder

Resize front panel
objects

Execution Highlighting
Button

Step Into Button

Step Over Button

Step Out Button

Additional Buttons on
the Diagram Toolbar

Status Toolbar

•Click the Run button to run the VI. While the VI runs, the Run button appears
with a black arrow if the VI is a top-level VI, meaning it has no callers and
therefore is not a subVI.

•Click the Continuous Run button to run the VI until you abort or pause it. You
also can click the button again to disable continuous running.

•While the VI runs, the Abort Execution button appears. Click this button to
stop the VI immediately.

Note: Avoid using the Abort Execution button to stop a VI.
Either let the VI complete its data flow or design a method to
stop the VI programmatically. By doing so, the VI is at a known
state. For example, place a button on the front panel that stops the
VI when you click it.

•Click the Pause button to pause a running VI. When you click the Pause button,
LabVIEW highlights on the block diagram the location where you paused
execution. Click the Pause button again to continue running the VI.

•Select the Text Settings pull-down menu to change the font settings for the VI,
including size, style, and color.

•Select The Align Objects pull-down menu to align objects along axes,
including vertical, top edge, left, and so on.

•Select the Distribute Objects pull-down menu to space objects evenly,
including gaps, compression, and so on.

•Select the Resize Objects pull-down menu to change the width and height of
front panel objects.

8

•Select the Reorder pull-down menu when you have objects that overlap each
other and you want to define which one is in front or back of another. Select one
of the objects with the Positioning tool and then select from Move Forward,
Move Backward, Move To Front, and Move To Back.

<the following items only appear on the bock diagram toolbar>

•Click the Highlight Execution button to see the flow of data through the block
diagram. Click the button again to disable execution highlighting.

•Click the Step Into button to single-step into a loop, subVI, and so on. Single-
stepping through a VI steps through the VI node to node. Each node blinks to
denote when it is ready to execute. By stepping into the node, you are ready to
single-step inside the node.

•Click the Step Over button to step over a loop, subVI, and so on. By stepping
over the node, you execute the node without single-stepping through the node.

•Click the Step Out button to step out of a loop, subVI, and so on. By stepping
out of a node, you complete single-stepping through the node and go to the next
node.

9

Control
Terminals

Block Diagram Window

Front Panel Window

Indicator
Terminals

Creating a VI

When you create an object on the Front Panel, a terminal will be created on the
Block Diagram. These terminals give you access to the Front Panel objects from
the Block Diagram code.

Each terminal contains useful information about the Front Panel object it
corresponds to. For example, the color and symbols provide the data type.
Double-precision, floating point numbers are represented with orange terminals
and the letters DBL. Boolean terminals are green with TF lettering.

In general, orange terminals should wire to orange terminals, green to green, and
so on. This is not a hard-and-fast rule; LabVIEW will allow a user to connect a
blue terminal (integer value) to an orange terminal (fractional value), for
example. But in most cases, look for a match in colors.

Controls have an arrow on the right side and have a thick border. Indicators
have an arrow on the left and a thin border. Logic rules apply to wiring in
LabVIEW: Each wire must have one (but only one) source (or control), and
each wire may have multiple destinations (or indicators).

The program in this slide takes data from A and B and passes the values to both
an Add function and a subtract function. The results are displayed on the
appropriate indicators.

10

Creating a VI – Block Diagram

In addition to Front Panel terminals, the Block diagram contains functions. Each
function may have multiple input and output terminals. Wiring to these
terminals is an important part of LabVIEW programming.

Once you have some experience programming in LabVIEW, wiring will
become easy. At first, you may need some assistance. Here are some tips to get
you started:

•The wiring tool is used to wire to the nodes of the functions. When you “aim”
with the wiring tool, aim with the end of the wire hanging from the spool. This
is where the wire will be placed.

•As you move the wiring tool over functions, watch for the yellow tip strip. This
will tell you the name of the terminal you are wiring to.

•As you move the wiring tool over a terminal, it will flash. This will help you
identify where the wire will attach.

•For more help with the terminals, right-click on the function and select Visible
Items>>Terminals. The function’s picture will be pulled back to reveal the
connection terminals. Notice the colors- these match the data types used by the
front panel terminals.

•For additional help, select Help>>Show Context Help, or press CTRL+H.
This will bring up the context help window. As you move your mouse over the
function, this window will show you the function, terminals, and a brief help
description. Use this with the other tools to help you as you wire.

11

• Block diagram executes
dependent on the flow of data;
block diagram does NOT
execute left to right

• Node executes when data is
available to ALL input terminals

• Nodes supply data to all output
terminals when done

Dataflow Programming

LabVIEW follows a dataflow model for running VIs. A block diagram node
executes when all its inputs are available. When a node completes execution, it
supplies data to its output terminals and passes the output data to the next node
in the dataflow path. Visual Basic, C++, JAVA, and most other text-based
programming languages follow a control flow model of program execution. In
control flow, the sequential order of program elements determines the execution
order of a program.

Consider the block diagram above. It adds two numbers and then subtracts 50.0
from the result of the addition. In this case, the block diagram executes from left
to right, not because the objects are placed in that order, but because one of the
inputs of the Subtract function is not valid until the Add function has finished
executing and passed the data to the Subtract function. Remember that a node
executes only when data are available at all of its input terminals, and it supplies
data to its output terminals only when it finishes execution.

In the code to the right, consider which code segment would execute first—the
Add, Random Number, or Divide function. You cannot know because inputs to
the Add and Divide functions are available at the same time, and the Random
Number function has no inputs. In a situation where one code segment must
execute before another, and no data dependency exists between the functions,
use a Sequence structure to force the order of execution.

12

Help Options

Context Help
• Online help
• Lock help
• Simple/Complex Diagram help
• Ctrl + H

Online reference
• All menus online
• Pop up on functions in diagram to access online info directly

Use the Context Help window and the LabVIEW Help to help you build and
edit VIs. Refer to the LabVIEW Help and manuals for more information.

Context Help Window

To display the Context Help window, select Help»Show Context Help or press
the <Ctrl-H> keys. When you move the cursor over front panel and block
diagram objects, the Context Help window displays the icon for subVIs,
functions, constants, controls, and indicators, with wires attached to each
terminal. When you move the cursor over dialog box options, the Context Help
window displays descriptions of those options. In the window, required
connections are bold, recommended connections are plain text, and optional
connections are dimmed or do not appear. Above is an example Context Help
window.

Click the Simple/Detailed Context Help button located on the lower left corner
of the Context Help window to change between simple and detailed context
help. The simple mode emphasizes the important connections. Optional
terminals are shown by wire stubs, informing you that other connections exist.

Click the Lock Context Help button to lock the current contents of the Context
Help window. When the contents are locked, moving the cursor over another
object does not change the contents of the window. To unlock the window, click
the button again. You also can access this option from the Help menu.

13

Debugging Techniques
• Finding Errors

• Execution Highlighting

• Probe

Click on broken Run button
Window showing error appears

Click on Execution Highlighting button; data
flow is animated using bubbles. Values are
displayed on wires.

Right-click on wire to display probe and it
shows data as it flows through wire segment

You can also select Probe tool from Tools
palette and click on wire

When your VI is not executable, a broken arrow is displayed in the Run button
in the palette.

Finding Errors: To list errors, click on the broken arrow. To locate the bad
object, click on the error message.
Execution Highlighting: Animates the diagram and traces the flow of the data,
allowing you to view intermediate values.

Click on the light bulb on the toolbar.
Probe: Used to view values in arrays and clusters.

Click on wires with the Probe tool or right-click on the wire to set
probes.

Breakpoint: Set pauses at different locations on the diagram.
Click on wires or objects with the Breakpoint tool to set breakpoints.

Use Debug Demonstrate VI from BASICS.LLB to demonstrate the options and
tools.

14

SubVIs

• A SubVI is a VI that can be used within another VI

• Similar to a subroutine

• Advantages
– Modular

– Easier to debug

– Don’t have to recreate code

– Require less memory

After you build a VI and create its icon and connector pane, you can use it in
another VI. A VI within another VI is called a subVI. A subVI corresponds to a
subroutine in text-based programming languages. Using subVIs helps you
manage changes and debug the block diagram quickly.

15

Icon and Connector

• An icon represents a VI in other block
diagrams

• A connector shows available
terminals for data transfer

Icon

Connector

Terminals

Every VI displays an icon, shown above, in the upper right corner of the front
panel and block diagram windows. An icon is a graphical representation of a VI.
It can contain text, images, or a combination of both. If you use a VI as a subVI,
the icon identifies the subVI on the block diagram of the VI.

The connector shows terminals available for transfer or data to and from the
subVI. There are several connector patterns to choose from. Right click on the
connector and select the pattern from the Patterns menu. From there you can
assign controls and indicators on the front panel to the connector terminal, as we
will see later.

16

Tips for Working in LabVIEW

• Keystroke Shortcuts
– <Ctrl-H> – Activate/Deactivate Context Help Window

– <Ctrl-B> – Remove Broken Wires From Block Diagram

– <Ctrl-E> – Toggle Between Front Panel and Block
Diagram

– <Ctrl-Z> – Undo (Also in Edit Menu)

• Tools » Options… – Set Preferences in LabVIEW

• VI Properties – Configure VI Appearance,
Documentation, etc.

LabVIEW has many keystroke shortcuts that make working easier. The most
common shortcuts are listed above.

While the Automatic Selection Tool is great for choosing the tool you would
like to use in LabVIEW, there are sometimes cases when you want manual
control. Use the Tab key to toggle between the four most common tools
(Operate Value, Position/Size/Select, Edit Text, Set Color on Front Panel and
Operate Value, Position/Size/Select, Edit Text, Connect Wire on Block
Diagram). Once you are finished with the tool you choose, you can press <Shift-
Tab> to turn the Automatic Selection Tool on.

In the Tools » Options… dialog, there are many configurable options for
customizing your Front Panel, Block Diagram, Colors, Printing, and much
more.

Similar to the LabVIEW Options, you can configure VI specific properties by
going to File » VI Properties… There you can document the VI, change the
appearance of the window, and customize it in several other ways.

17

Data Acquisition Terminology

• Resolution - Determines How Many Different Voltage
Changes Can Be Measured
– Larger Resolution More Precise Representation of Signal

• Range - Minimum and Maximum Voltages
– Smaller range More Precise Representation of Signal

• Gain - Amplifies or Attenuates Signal for Best Fit in
Range

Resolution: When acquiring data to a computer, an Analog-to-Digital Converter
(ADC) takes an analog signal and turns it into a binary number. Therefore, each
binary number from the ADC represents a certain voltage level. The ADC
returns the highest possible level without going over the actual voltage level of
the analog signal. Resolution refers to the number of binary levels the ADC can
use to represent a signal. To figure out the number of binary levels available
based on the resolution you simply take 2Resolution. Therefore, the higher the
resolution, the more levels you will have to represent your signal. For instance,
an ADC with 3-bit resolution can measure 23 or 8 voltage levels, while an ADC
with 12-bit resolution can measure 212 or 4096 voltage levels.

Range: Unlike the resolution of the ADC, the range of the ADC is selectable.
Most DAQ devices offer a range from 0 - +10 or -10 to +10. The range is
chosen when you configure your device in NI-DAQ. Keep in mind that the
resolution of the ADC will be spread over whatever range you choose. The
larger the range, the more spread out your resolution will be, and you will get a
worse representation of your signal. Thus it is important to pick your range to
properly fit your input signal.

18

Gain: Properly choosing the range of your ADC is one way to make sure you
are maximizing the resolution of your ADC. Another way to help your signal
maximize the resolution of the ADC is by applying a gain. Gain refers to any
amplification or attenuation of a signal. The gain setting is a scaling factor. Each
voltage level on your incoming signal is multiplied by the gain setting to
achieve the amplified or attenuated signal. Unlike resolution that is a fixed
setting of the ADC, and range that is chosen when the DAQ device is configured,
the gain is specified indirectly through a setting called input limits. Input limits
refers to the minimum and maximum values of your actual analog input signal.
Based on the input limits you set, the largest possible gain is applied to your
signal that will keep the signal within the chosen range of the ADC. So instead
of needing to calculate the best gain based on your signal and the chosen range,
all you need to know is the minimum and maximum values of your signal.

19

Loops

• While Loops
– Have Iteration Terminal

– Always Run at least Once

– Run According to Conditional
Terminal

• For Loops
– Have Iteration Terminal

– Run According to input N of
Count Terminal

Both the While and For Loops are located on the Functions»Structures palette.
The For Loop differs from the While Loop in that the For Loop executes a set
number of times. A While Loop stops executing the subdiagram only if the
value at the conditional terminal exists.

While Loops

Similar to a Do Loop or a Repeat-Until Loop in text-based programming
languages, a While Loop, shown at the top right, executes a subdiagram until a
condition is met. The While Loop executes the sub diagram until the conditional
terminal, an input terminal, receives a specific Boolean value. The default
behavior and appearance of the conditional terminal is Continue If True,
shown at left. When a conditional terminal is Continue If True, the While Loop
executes its subdiagram until the conditional terminal receives a FALSE value.
The iteration terminal (an output terminal), shown at left, contains the number
of completed iterations. The iteration count always starts at zero. During the
first iteration, the iteration terminal returns 0.

For Loops

A For Loop, shown at left, executes a subdiagram a set number of times. The
value in the count terminal (an input terminal) represented by the N, indicates
how many times to repeat the subdiagram. The iteration terminal (an output
terminal), shown at left, contains the number of completed iterations. The
iteration count always starts at zero. During the first iteration, the iteration
terminal returns 0.

20

Charts

Waveform chart – special
numeric indicator that can
display a history of values

Controls >> Graph Indicators
>> Waveform Chart

The waveform chart is a special numeric indicator that displays one or more
plots. The waveform chart is located on the Controls»Graph Indicators palette.
Waveform charts can display single or multiple plots. The following front panel
shows an example of a multi-plot waveform chart.

You can change the min and max values of either the x or y axis by double
clicking on the value with the labeling tool and typing the new value. Similarly,
you can change the label of the axis. You can also right click the plot legend and
change the style, shape, and color of the trace that is displayed on the chart.

21

File I/O

File I/O – passing data to and from files

 - Files can be binary, text, or spreadsheet

 - Write/Read LabVIEW Measurements file (*.lvm)

Writing to LVM fileWriting to LVM file Reading from LVM fileReading from LVM file

File I/O operations pass data to and from files. In LabVIEW, you can use File
I/O functions to:

Open and close data files

Read data from and write data to files

Read from and writ to spreadsheet-formatted files

Move and rename files and directories

Change file characteristics

Create, modify, and read a configuration file

Write to or read from LabVIEW Measurements files.

In this course we will examine how to write to or read from LabVIEW
Measurements files (*.lvm files).

22

Write LabVIEW Measurement File
• Includes the open, write, close and error handling functions

• Handles formatting the string with either a tab or comma
delimiter

• Merge Signals function is used to combine data into the
dynamic data type

The Write LVM file can write to spreadsheet files. However, its main purpose is for
logging data, that will be used in LabVIEW. This VI creates a .lvm file which can be
opened in a spreadsheet application. For simple spreadsheet files, use the Express
VIs: Write LVM and Read LVM.

23

Where Do I Go From Here?

• Example programs (Help» Find Examples…)

• LabVIEW Student Edition (www.ni.com/labviewse)

• Web resources (ni.com)
– NI Developer Zone (zone.ni.com)

– Application Notes

– Info-labview newsgroup (www.info-labview.org/)

– Instrument Driver Library (www.ni.com/idnet)

Where do you go from here?

•National Instruments offers a wide range of instructional courseware to expand
your knowledge. Please visit ni.com/academic for programs and resources
available.
•The LabVIEW Student Edition is a available from our website. In includes
Learning With LabVIEW, a textbook written by Dr. Bob Bishop from the
University of Texas at Austin.
•The web is the best place to turn in order to find information on LabVIEW.
Ni.com is designed to be the one stop resource to find information.

•The NI Developer Zone (“NIDZ”) is a place for developers to meet,
discuss design issues, and post content.
•Application Notes can be downloaded from ni.com/support on a variety
of topics.
•Info-labview is a newsgroup maintained by a third party.
•There is an exhaustive library of LabVIEW instrument drivers available
for download from NIDZ.

